7th Marathon of Parallel Programming
WSCAD-SSC/SBAC-PAD-2012

October 17", 2012.

Rules

For all problems, read carefully the input and output session. For all problems, a
sequential implementation is given, and it is against the output of those implementations
that the output of your programs will be compared to decide if your implementation is
correct. You can modify the program in any way you see fit, except when the problem
description states otherwise. You must upload a compressed file with your source code,
the Makefile and an execution script. The program to execute should have the name of
the problem. You can submit as many solutions to a problem as you want. Only the last
submission will be considered. The Makefile must have the rule all, which will be used
to compile your source code before submit. The execution script runs your solution the
way you design it — it will be inspected not to corrupt the target machine.

All teams have access to the target machine during the marathon. Your execution may
have concurrent process from other teams. Only the judges have access to a non-
concurrent cluster.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least twice with the
same input and only the smaller time will be taken into account. The sequential program
given will be measured the same way. You will earn points in each problem,
corresponding to the division of the sequential time by the time of your program
(speedup). The team with the most points at the end of the marathon will be declared the

winner.

This problem set contains 5 problems; pages are numbered from 1 to 15.

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012 1

Problem A
Bucket Sort

Bucket Sort is another divide and conquer algorithm. It works by partitioning an array
into a number of buckets. Each bucket is then sorted individually, either using a
different sorting algorithm, or by recursively applying the bucket sorting algorithm®.

Figure A.1 shows a simple example.

29 25 3 49 9 37 21 43

2925 37 49
21 43

10-19 20-259 30-39 40-4%

s —
- 43
IIIII[iii] IEHIIIIIHI

21 25 29 37 43 49

Figure A.1 — Partitioning an array and sorting the buckets.

Write a parallel program that uses a Bucket Sort algorithm to sort keys.

Input

The input file contains only one test case. The first line contains the total number of
keys (N) to be sorted (94 < N < 10'). The following lines contain N keys, each key in a
separate line. A key is a seven-character string made up of printable characters (0x21 to
Ox7E — ASCII) not including the space character (0x20 ASCII). The input keys are
uniformly distributed.

The input must be read from a file named bucketsort.in

! http://en.wikipedia.org/wiki/Bucket_sort

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

Output

The output file contains the sorted keys. Each key must be in a separate line.

The output must be written to a file named bucketsort.out

Example

Input Output for the input
11 1234567
SINAPAD CTDeWIC
SbacPad LADGRID
Wscadl?2 MPP2012
Sinapad SINAPAD
1234567 SINApad
LADGRID SbacPad
WEAC-12 Sinapad
CTDeWIC WEAC-12
sinaPAD Wscadl2
MPP2012 sinaPAD
SINApad

This example is not a real input file: see input specification above.

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

#tinclude <stdlib.h>
#include <string.h>
#tinclude "bucketsort.h"

#define N_BUCKETS 94

typedef struct {
long int *data;
int length;
long int total;
} bucket;

void sort(char *a, bucket *bucket) {
int j, i, length;
long int key;
length = bucket->length;
for (j 1; j < bucket->total; j++) {
key = bucket->datal[j];
i=3-1;
while (i >= 0
&& strcmp(a + bucket->data[i] *
length, a + key * length) > 0) {
bucket->data[i + 1] = bucket->data[i];
1--5

}
bucket->data[i + 1] = key;

long int* bucket_sort(char *a, int length, long int size) {

long int i;
bucket buckets[N_BUCKETS], *b;
long int *returns;

// allocate memory

returns = malloc(sizeof(long int) * size);

for (i = @; 1 < N_BUCKETS; i++) {
buckets[i].data = returns + i * size / N_BUCKETS;
buckets[i].length = length;
buckets[i].total = 0,

// copy the keys to "buckets"
for (i = 0; 1 < size; i++) {
b = &buckets[*(a + i * length) - ox21];

b->data[b->total++] = i;

// sort each "bucket"
for (i = @; i < N_BUCKETS; i++)
sort(a, &buckets[i]);

return returns;

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012 4

Problem B
Mutually Friendly Numbers

Two numbers are mutually friendly if the ratio of the sum of all divisors of the number
and the number itself is equal to the corresponding ratio of the other number. This ratio
is known as the abundancy of a number. For example, 30 and 140 are friendly, since the
abundancy of these two numbers is equal. Figure B.1 show this example.

1+2+3+45+6+10+15+30 _72 12

30 30 5
1+2+4+5+7+10+14+20+28+35+70+140 336 12
140 140 5

Figure B.1 — 30 and 140 are friendly.

This problem consists in finding all pairs of natural numbers that are mutually friendly
within the range of positive integers provided to the program at the start of the
execution.

Write a parallel program to compute mutually friendly numbers.

Input

The input contains several test cases. Each line contains two integers (1 < S, E < 2%%)
that correspond to the range where the mutually friendly numbers will be searched. The
test case ends when S=0 and E=0.

The input must be read from the standard input.

Output
The output contains a message for each mutually friendly numbers found, for each test
case.

The output must be written to the standard output.

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

Example

Input Output for the input

30 140 Number 30 to 140

100 1000 30 and 140 are FRIENDLY
00 Number 100 to 1000

102 and
114 and
120 and
135 and
138 and
150 and
174 and
186 and
240 and
864 and

476
532
672
819
644
700
812
868
600
936

are
are
are
are
are
are
are
are
are
are

FRIENDLY
FRIENDLY
FRIENDLY
FRIENDLY
FRIENDLY
FRIENDLY
FRIENDLY
FRIENDLY
FRIENDLY
FRIENDLY

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

int ged(int u, int v) {
if (v == 0)
return u;
return gcd(v, u % v);

void friendly numbers(long int start, long int end) {
long int last = end - start + 1;

long int *the_num;

the_num = (long int*) malloc(sizeof(long int) * last);
long int *num;

num = (long int*) malloc(sizeof(long int) * last);
long int *den;

den = (long int*) malloc(sizeof(long int) * last);

long int i, j, factor, ii, sum, done, n;

for (i = start; i <= end; i++) {
ii = i - start;
sum = 1 + i;
the_num[ii] =
done = i;
factor = 2;
while (factor < done) {
if ((i % factor) == 0) {
sum += (factor + (i / factor));
if ((done = i / factor) == factor)
sum -= factor;

i

}

factor++;

}
num[ii]
den[ii]

]
(W
..

n = gcd(num[ii], den[ii]);
num[ii] /= n;
den[ii] /= n;
} // end for
for (i = 0; 1 < last; i++)
for (j =1+ 1; j < last; j++) {
if ((num[i] == num[j]) && (den[i] ==

den[3j]))

printf("%1ld and %1d are FRIENDLY\n",

the_num[i], the num[j]);

}

free(the_num);
free(num);
free(den);

int main(int argc, char **argv) {

long int start;
long int end;

while (1) {
scanf("%ld %1d", &start, &end);
if (start == 0 && end == 0)
break;
printf("Number %1d to %ld\n", start, end);
friendly numbers(start, end);

return EXIT_SUCCESS;

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012 7

Problem C

Haar Wavelets

Compressing digital images is the key to store and transmit movies nowadays. This
happens with JPG2000 images and MPEG videos (MPEG4 and H.264). Haar Wavelet
transform is part of this compression®.

Each image consists of a fairly large number of little squares called pixels (picture
elements). The matrix corresponding to a digital image assigns a whole number to each
pixel. For example, in the case of a 256x256 pixel gray scale image, the image is stored
as a 256x256 matrix, with each element of the matrix being a whole number ranging
from O (for black) to 225 (for white).

Before understanding the transform in the matrix, let’s see it in a vector. Consider it
with n elements. The Haar wavelet transform calculates the approximation coefficients

(a) and details coefficients (d) as follows:

% ed= % where p; (i <n) is a value from the vector.

After the transformation, a new vector is formed as follows:

a=

th= [8.1 dy ... dpp d1 dg dn/z]

Figure C.1 show an example.

to=[420 680 448 709 1420 1260 1600 1600]
a; = (420+680) = 2, d; = (420-680) + 2

8, = (448+709) + 2, d, = (448-709) + 2

as = (1420+1260) + 2, d3 = (1420-1260) = 2
as = (1600+1600) + 2, ds = (1600-1600) = 2, .-
t, = [550 578 1340 1600 -130 -130 80 0]
a; = (550+578) + 2, d; = (550-578) + 2

a, = (1340+1600) + 2, d, = (1340-1600) = 2
t, = [564 1470 -14 -130 -130 -130 80 0]
ay = (564+1470) + 2, d; = (564-1470) + 2

ts = [1017 -453 -14 -130 -130 -130 80 0]

Figure C.1 — Haar wavelet transform in an 8-vector.

2 http://aix1.uottawa.ca/~jkhoury/haar.htm

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012 8

In general, if the data string has length equal to 2¥, then the transformation process will
consist of k steps. In the above case, there will be 3 steps since 8=2°.
Back to an image, considering a 2*x2X matrix, a new matrix can be obtained by

alternating the row-transformation and column-transformation, as show in Figure C.2.

RN —

Figura C.2 — Row-transformation and column-transformation.

Write a parallel program that implements the Haar wavelet transform.

Input

The input contains only one test case. The input file is in binary format: the first 32 bits
word represents the width (and height) of an image (2> < S < 2'°); all the images come
next, until the end of file. Each pixel is represented by a 32 bits word.

The input must be read from a file named image.in

Output
The output file must be in binary format, keeping the same structure from input file.
This output file must have the processed image.

The output must be written to a file named image.out

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

#include <stdio.h>
#include <stdlib.h>
#tinclude <math.h>

#define pixel(x,y) pixels[((y)*size)+(x)]
int main(int argc, char *argv[]) {

FILE *in;
FILE *out;

in = fopen("image.in", "rb");

if (in == NULL) {
perror("image.in");
exit(EXIT_FAILURE);

}

out = fopen("image.out", "wb");

if (out == NULL) {

perror("image.out");

exit(EXIT_FAILURE);

long long int s, size, mid;

int x, y;

long long int a, d;

double SQRT_2;

fread(&size, sizeof(size), 1, in);

fwrite(&size, sizeof(size), 1, out);

int *pixels = (int *) malloc(size * size *

sizeof(int));

if (!fread(pixels, size * size * sizeof(int), 1, in)) {
perror("read error");
exit(EXIT_FAILURE);

// haar
SQRT_2 = sqrt(2);
for (s = size; s > 1; s /= 2) {

mid = s / 2;

// row-transformation

for (y = 0; y < mid; y++) {

for (x = 0; x < mid; x++) {

pixel(x,y);
(a+pixel(mid+x,y))/SQRT_2;
pixel(x,y);
(d-pixel(mid+x,y))/SQRT_2;
pixel(x,y) = a;
pixel(mid+x,y) = d;

Q Qv w
1}

}

// column-transformation
for (y = 0; y < mid; y++) {

for (x = @; x < mid; x++) {
pixel(x,y);
(a+pixel(x,mid+y))/SQRT_2;
pixel(x,y);
(d-pixel(x,mid+y))/SQRT_2;
pixel(x,y) = a;
pixel(x,mid+y) = d;

Q Qv w
o

}

fwrite(pixels, size * size * sizeof(int), 1, out);
free(pixels);
fclose(out);

fclose(in);

return EXIT_SUCCESS;

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012 10

Problem D

Unbounded Knapsack Problem

The unbounded knapsack problem is a classical resource allocation problem with many
real-world applications, such as capital investment, microchip synthesis, and
cryptography, etc. The problem is as follows.

Suppose n items x; to x, where x; has weight w; and value v;. Also, suppose a knapsack
with maximum weight capacity M. All the previous variables are non-negative integers.

The problem is to determine values for all x;, such that:

> xv, is the maximal, and

Z.n xw <M is true.

= 11

The unbounded knapsack problem is NP-hard. The problem is said “unbounded”
because there is no limiting value for x;.

Write a parallel program that solves the knapsack problem.

Input

The input contains only one test case. The first line contains two integers, separated by a
space: the number of item n and the knapsack’s capacity M. The remaining n lines, one
per item x;, also contain two space-separated integers, the value (1 <v; < 1024) and the
weight (1 < w; < 1024) of item X;.

The input must be read from the standard input.

Output
The output contains only one line printing the integer that is the maximal value achieved
for the knapsack problem.

The output must be written to the standard output.

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

Example

Input Output for the input
3 50 300

60 10

100 20

120 30

12

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

typedef struct _item_t {

int value; // v_i

int weight; // w_i

float density; // v_i/w_i
} item_t;

int greater_f(const int x, const int y);
int compare_f(const void *x, const void *y);

int knapsack_f(const int n, const int M, const item_t * const
itens) {

int v=0, w=20;
int r = 9;
if (n < 1)

return 0;

while (M - w >= @) {
r = greater_f(r, v + knapsack_f(n - 1, M - w,
&(itens[1])));
v += itens[0@].value;
w += itens[0].weight;

return r;

int main(int argc, const char *argv[]) {

int n;
int M;
item_t *itens;

scanf("%d %d", &n, &M);
itens = (item_t*) calloc(n, sizeof(item_t));

for (i =0; 1 < n; ++1i) {
scanf("%d %d", &(itens[i].value),
&(itens[i].weight));
itens[i].density = (float) (itens[i].value) /
itens[i].weight;

}

qsort(itens, (size_t) n, sizeof(item_t), compare f);
printf("%d\n", knapsack_f(n, M, itens));
free(itens);

return 0;

int greater_f(const int x, const int y) {
return (x > y) ? x : vy;

int compare_f(const void *x, const void *y) {
return ((item_t*) x)->density - ((item_t*) y)->density;

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012 13

Problem E
We’re Back: 3SAT

Satisfiability is the problem of determining if the variables of a given Boolean formula
can be assigned in such a way as to make the formula evaluate to TRUE. Equally
important is to determine whether no such assignments exist, which would imply that
the function expressed by the formula is identically FALSE for all possible variable
assignments. In this latter case, we would say that the function is unsatisfiable;
otherwise it is satisfiable.
A literal is either a variable or the negation of a variable. A clause is a disjunction of
literals.
3SAT is a special case of k-satisfiability, when each clause contains exactly k = 3
literals. For example:

E=(X VX VX) AV X VX,)
In this formula, E has two clauses (denoted by parentheses), four variables (x1, X2, X3,

X4), and k=3 (three literals per clause).

Write a parallel program that determines if there is an assignment of Boolean values that

will satisfy the given 3SAT expression.

Input

The input contains only one test case. The first line contains two integers: the number of
clauses (N) and the number of literals (L), separated by a single space (1 < N < 255,
1 <L < 2%). The next N lines contain three integers separated by a space (1 < x; < N).
These integers represent a literal: either a variable or the negation of a variable.

The input must be read from the standard input.

Output

If there is an assignment that satisfies the entire input expression, the output contains an
integer that represents the solution followed by its binary representation: each bit
represents the variable’s value.

Otherwise, if there is no solution, the output contains only one message ‘Solution not

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

found.’.

The output must be written to the standard output.

Example 1

Input Output for the input

4 3 Solution found [5]: 1 0 1
333

21 -1

-3 -2 -3

212

Example 2

Input Output for the input

2 1 Solution not found.
111

15

7" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2012

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

long solveClauses(short **clauses, int nClauses, int nvar) {

long *ivar = (long *) malloc(nVar * sizeof(long));
int i;
for (i = ©; i < nVar; i++)

ivar[i] = exp2(i);

unsigned long maxNumber = exp2(nVar);
long number;

short var;

int c;

for (number = @; number < maxNumber; number++) {
for (c = ©; c < nClauses; c++) {

var = clauses[@][c];

if (var > © & & (number & ivar[var - 1]) > @)
continue; // clause is true

else if (var < 0 && (number & iVar[-var - 1]) == 0)
continue; // clause is true

var = clauses[1][c];

if (var > 0 & & (number & ivVar[var - 1]) > 0)
continue; // clause is true

else if (var < © & (number & ivar[-var - 1]) == @)
continue; // clause is true

var = clauses[2][c];

if (var > 0 & & (number & ivar[var - 1]) > 0)
continue; // clause is true

else if (var < © & (number & iVar[-var - 1]) == 0)
continue; // clause is true

break; // clause is false

-

if (¢ == nClauses)
return number;

return -1;

}

short **readClauses(int nClauses, int nVar) {

short **clauses = (short **) malloc(3 * sizeof(short *));

clauses[@] = (short *) malloc(nClauses * sizeof(short));
clauses[1] = (short *) malloc(nClauses * sizeof(short));
clauses[2] = (short *) malloc(nClauses * sizeof(short));
int i;

for (i = @; i < nClauses; i++) {
scanf("%hd %hd %hd", &clauses[@][i], &clauses[1][i],
&clauses[2][1]);
¥

return clauses;

int main(int argc, char *argv[]) {

int nClauses;
int nvar;
scanf("%d %d", &nClauses, &nVar);

short **clauses = readClauses(nClauses, nVar);
long solution = solveClauses(clauses, nClauses, nVar);

int i;
if (solution >= @) {
printf("Solution found [%1ld]: ", solution);
for (i = ©; 1 < nVar; i++)
printf("%d ", (int) ((solution & (long) exp2(i)) /
exp2(i)));
printf("\n");
} else
printf("Solution not found.\n");

return EXIT_SUCCESS;

