
FCDS – Lab
Summer Semester 2015

Your Advisors

• Frank Busse, frank.busse@tu-dresden.de
• Dmitrii Kuvaiskii, dmitrii.kuvaiskii@tu-dresden.de

If you’re stuck, have questions/issues, or want to
have a consultation, write to one of us

We also encourage using Auditorium,
“Lab: Concurrent and Distributed Systems” group:
https://auditorium.inf.tu-dresden.de/en/groups/2023686

2

mailto:frank.busse@tu-dresden.de
mailto:dmitrii.kuvaiskii@tu-dresden.de
https://auditorium.inf.tu-dresden.de/en/groups/2023686

Introduction

Single-threaded code
– Underutilized hardware

– Not scalable

Concurrent code
– low-level concurrency using threads & locks

– Higher level concurrency using fork/join model
or actors

– Leverage multicore hardware

3

4

Explanation from Rob Pike

(Rob Pike, “Concurrency is not Parallelism”,

http://talks.golang.org/2012/waza.slide)

5

Explanation from Rob Pike

6

Amdahl's Law

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
p

ee
d

u
p

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Parallel Portion
50%
75%
90%
95%

Goals

– Introduction to state-of-the-art concurrency
technologies

– Hands-on experience in designing high-
performance algorithms

– First experience in parallel programming

– Evaluation of different approaches

7

Submission
• Intermediate presentation:

– Date: 15.6.2015 / 11:00 – 12:30 / room INF3105

– Present the ideas/concepts at midterm

• Final presentation:
– Date: 20.7.2015 / 11:00 – 12:30 / room INF3105

– 5 tasks must be solved to pass the lab

– Your program will be evaluated at the end of the lab

– deliverables deadline: 13.7.2015 / 11:59 pm
– Your presentation includes:

– Program architecture
– Experience gathered
– Algorithm tricks

8

Required Measurements

• Total execution time for 1, 2, 4, 8 cores
• Show that your solution scales

9

Testing Machine

– ssh fcdsrl08.zih.tu-dresden.de

– 8 CPU machine

– accounts: (XX ∈ {01, ... ,05})
login: studentXX
password: FCDstun_XX

– This is not a debugging machine!

10

Concurrency Concepts

– Thread Model

– Fork-Join Model

– Message Passing Model

– Actors Model

– Implementations: language/library

11

Thread Model
• Shared memory model
• Single "heavy weight" process has multiple "light

weight", concurrent execution paths (threads)
• Threads communicate via shared variables (need to

be careful: locks/semaphores) and/or sending signals
• Threads split the tasks
• Most control, least safety/comfort

• Implementations:
 - C (Pthreads)
 - C++ (Boost Threads)
 - Java (Thread/Runnable classes)
 - Python (threading module)

12

Threading Example

13

Fork-Join Model
• Divide & Conquer model to solve hierarchical

problems
• Split a problem into smaller sub-problems and

recursively apply the same algorithm to each sub-
problem (Fork)

• Solutions of all sub-problems are combined to solve the
initial problem (Join)

• Sub-problems do not share data: no locks, no races!

• Implementations:
– Java (ForkJoinPool)
– C OpenMP -- uses pragmas, gcc 4.3
– Cilk Plus -- extension of C/C++, gcc 4.9

14

Fork-Join Example

15

Message Passing Model
• Different objects (actors, agents) communicate only

via sending and receiving messages
• No shared data – messages contain full copies
• Need an infrastructure to communicate – channels

(message queues, pipes, sockets)
• Synchronous or Asynchronous
• Great for distributed programming, useful for

concurrent programming

• Implementations:
– ZeroMQ (bindings to C, C++, Java, Python, PHP,

Ruby)

16

Message Passing Example

17

Actor Model

• Specific implementation of message passing
• Actors are independent isolated objects
• Actors communicate only via asynchronous

messages:
– Actor can send message to itself → recursion

– Actors can create new actors and send their addresses
to other actors

• Actors reuse the same threads from thread pool

• Implementations:
– Erlang
– Rust / D / Google Go

18

Tasks
• Tasks provided by the 7th Marathon of Parallel

Programming 2012
https://bitbucket.org/dimakuv/fcds-lab-2015

• Main requirements:
– program correctness and concurrency

• 5 Tasks:
– Bucketsort

– Mutually Friendly Numbers

– Haar Wavelets

– Unbounded Knapsack Problem

– 3SAT
19

https://bitbucket.org/dimakuv/fcds-lab-2015

Task 1: Bucketsort

1. Divide and Conquer
algorithm

2. Partition input array
into buckets

3. Sort each bucket
individually

20

Task 2: Mutually Friendly
Numbers

1. Two numbers are mutually friendly
• if the ratio of the sum of all divisors of the number
• and the number itself
• is equal to the corresponding ratio of the other

number

2. Find all pairs of numbers that are mutually friendly in
specified range

21

Task 3: Haar Wavelets

1. Transformation to prepare images for compression

2. Input: matrix of
ZxZ greyscale
pixels

3. Each pass: calculate
approximation and
details coefficients

4. Next pass on
smaller matrix

22

Task 4: Unbounded Knapsack
Problem

1. Resource allocation problem

2. You have a knapsack with weight capacity M

3. You also have n types of items with their
weights and values

4. Cram so many items in the knapsack that:
• the total value is the maximum possible and
• the total weight does not exceed M

5. Unbounded means as many copies of each type
of item as you like!

23

Task 5:We're Back: 3SAT
1. 3-satisfiability, where each clause contains

exactly 3 literals

2. Literal is a variable or a negation of variable

3. Input: amount of clauses, amount of variables

4. Prove satisfiability:
• If at least one assignment of variables exists

when formula becomes TRUE, then function is
satisfiable

• If no such assignment exists (formula is always
FALSE), then function is unsatisfiable

24

Our Suggestions

• You always wanted to try that new language or
library?
– Try it for this lab, we’re happy with new approaches

• You don’t have any preferences?
– Choose from one of our suggestions

Language C with
Pthreads

Java with
Fork/Join

Python with
ZeroMQ

Google Go with
go-routines

Rust

Parallel
model

Threads Fork/Join Message
Passing

Actors Actors

25

	Slide 1
	Your Advisors
	Introduction
	Slide 4
	Slide 5
	Slide 6
	Goals
	Submission
	Required Measurements
	Testing Machine
	Concurrency Concepts:
	Thread Model
	Threading Example
	Fork-Join Model
	Fork-Join Example
	Message Passing Model
	Message Passing Example
	Actor Model
	Tasks
	Task 1: Bucketsort
	Task 2: Mutually Friendly Numbers
	Task 3: Haar Wavelets
	Task 4: Unbounded Knapsack Problem
	Task 5:We're Back: 3SAT
	Our Suggestions

