finish algorithm

This commit is contained in:
Jörg Thalheim 2016-05-12 13:16:30 +00:00
parent 8bd610b72f
commit 059c4073b9
2 changed files with 93 additions and 59 deletions

View File

@ -1,3 +1,2 @@
pandas
numpy
scipy

151
test.py
View File

@ -1,75 +1,110 @@
#import pandas as pn
import numpy as np
from numpy.fft import fft, ifft
from scipy.sparse.linalg import eigs
import math
import numpy as np
from numpy.random import randint
from numpy.linalg import norm
from numpy.fft import fft, ifft
from scipy.sparse.linalg import eigs
from scipy.stats import zscore
from scipy.ndimage.interpolation import shift
def next_greater_power_of_2(x):
return 2**(x-1).bit_length()
def ncc_c(x,y):
"""
>>> ncc_c([1,2,3,4], [1,2,3,4])
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
0.36666667, 0.13333333])
>>> ncc_c([1,1,1], [1,1,1])
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
>>> ncc_c([1,2,3], [-1,-1,-1])
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
"""
x_len = len(x)
fft_size = 1<<(2*x_len-1).bit_length()
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
return np.real(cc) / (norm(x) * norm(y))
def sbd(x, y):
fft_size = next_greater_power_of_2(len(x))
cc = np.abs(ifft(fft(x, fft_size) * fft(y, fft_size)))
ncc = cc / math.sqrt((sum(x**2) * sum(y**2)))
"""
>>> sbd([1,1,1], [1,1,1])
(-2.2204460492503131e-16, array([1, 1, 1]))
>>> sbd([0,1,2], [1,2,3])
(0.043817112532485103, array([1, 2, 3]))
>>> sbd([1,2,3], [0,1,2])
(0.043817112532485103, array([0, 1, 2]))
"""
ncc = ncc_c(x, y)
idx = ncc.argmax()
dist = 1 - ncc[idx]
return dist, shift(y, idx - len(x))
yshift = shift(y, (idx + 1) - max(len(x), len(y)))
return dist, yshift
def extract_shape(idx, x, j, cur_center):
"""
>>> extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
array([ -1.00000000e+00, -3.06658683e-19, 1.00000000e+00])
>>> extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
array([-0.96836405, 1.02888681, -0.06052275])
"""
_a = []
for i in range(len(idx)):
if idx[i] == j:
if cur_center.sum() == 0:
opt_x = x[i]
else:
_, opt_x = sbd(cur_center, x[i])
_a.append(opt_x)
a = np.array(_a)
if len(a) == 0:
return np.zeros((1, x.shape[1]))
columns = a.shape[1]
y = zscore(a,axis=1,ddof=1)
s = np.dot(y.transpose(), y)
p = np.empty((columns, columns))
p.fill(1.0/columns)
p = np.eye(columns) - p
m = np.dot(np.dot(p, s), p)
_, vec = eigs(m, 1)
centroid = np.real(vec[:,0])
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
if finddistance1 >= finddistance2:
centroid *= -1
return zscore(centroid, ddof=1)
def extract_shape(x, c):
n = len(x)
m = len(x[0])
new_x = np.zeros((n, m))
for i, row in enumerate(x):
_, x_i = sbd(c, row)
new_x[i] = x_i
s = np.dot(new_x.transpose(), new_x)
q = np.identiy(len(s)) - np.ones(len(s)) * 1 / m
M = np.dot(np.dot(q.transpose(), s), q)
_, vec = eigs(M, 1)
return vec[0]
def kshape(x, k):
"""
>>> kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
(array([0, 0, 1, 0]), array([[-1.19623139, -0.26273649, 0.26273649, 1.19623139],
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
"""
m = x.shape[0]
idx = randint(0, k, size=m)
centroids = np.zeros((k,x.shape[1]))
def k_shape(x, k):
iter_ = 0
idx = np.zeros(len(x)) # TODO dimension, random init
old_idx = np.zeros(len(x))
c = np.zeros((k,)) # TODO dimension
while idx != old_idx and iter_ < 100:
old_idx = idx.copy()
distances = np.empty((m, k))
for _ in range(100):
old_idx = idx
for j in range(k):
x_ = []
for i, x_i in enumerate(x):
if idx(i) == j:
x_.append(x_i)
c[j] = extract_shape(x_, c[j])
for i, x_i in enumerate(x):
min_dist = np.inf
for j, c_j in enumerate(c):
dist, _ = sbd(c_j, x_i)
if dist < min_dist:
min_dist = dist
idx[i] = j
res = extract_shape(idx, x, j, centroids[j])
centroids[j] = res
for i in range(m):
for j in range(k):
distances[i,j] = 1 - max(ncc_c(x[i], centroids[j]))
idx = distances.argmin(1)
if norm(old_idx - idx) == 0:
break
return idx, centroids
def test_extract_shape():
a = zscore(np.ones((3, 10)))
c = np.arange(10)
extract_shape(a, c)
def test_sbd():
a = np.arange(100)
r1 = sbd(zscore(a), zscore(a))
r2 = sbd(zscore(a), zscore(shift(a, 3)))
r3 = sbd(zscore(a), zscore(shift(a, -3)))
r4 = sbd(zscore(a), zscore(shift(a, 30)))
r5 = sbd(zscore(a), zscore(shift(a, -30)))
if __name__ == "__main__":
test_sbd()
test_extract_shape()
import doctest
doctest.testmod()