finish algorithm
This commit is contained in:
parent
8bd610b72f
commit
059c4073b9
@ -1,3 +1,2 @@
|
||||
pandas
|
||||
numpy
|
||||
scipy
|
||||
|
151
test.py
151
test.py
@ -1,75 +1,110 @@
|
||||
#import pandas as pn
|
||||
import numpy as np
|
||||
from numpy.fft import fft, ifft
|
||||
from scipy.sparse.linalg import eigs
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
from numpy.random import randint
|
||||
from numpy.linalg import norm
|
||||
from numpy.fft import fft, ifft
|
||||
|
||||
from scipy.sparse.linalg import eigs
|
||||
from scipy.stats import zscore
|
||||
from scipy.ndimage.interpolation import shift
|
||||
|
||||
|
||||
def next_greater_power_of_2(x):
|
||||
return 2**(x-1).bit_length()
|
||||
def ncc_c(x,y):
|
||||
"""
|
||||
>>> ncc_c([1,2,3,4], [1,2,3,4])
|
||||
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
|
||||
0.36666667, 0.13333333])
|
||||
>>> ncc_c([1,1,1], [1,1,1])
|
||||
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
|
||||
>>> ncc_c([1,2,3], [-1,-1,-1])
|
||||
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
|
||||
"""
|
||||
x_len = len(x)
|
||||
fft_size = 1<<(2*x_len-1).bit_length()
|
||||
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
|
||||
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
|
||||
return np.real(cc) / (norm(x) * norm(y))
|
||||
|
||||
|
||||
def sbd(x, y):
|
||||
fft_size = next_greater_power_of_2(len(x))
|
||||
cc = np.abs(ifft(fft(x, fft_size) * fft(y, fft_size)))
|
||||
ncc = cc / math.sqrt((sum(x**2) * sum(y**2)))
|
||||
"""
|
||||
>>> sbd([1,1,1], [1,1,1])
|
||||
(-2.2204460492503131e-16, array([1, 1, 1]))
|
||||
>>> sbd([0,1,2], [1,2,3])
|
||||
(0.043817112532485103, array([1, 2, 3]))
|
||||
>>> sbd([1,2,3], [0,1,2])
|
||||
(0.043817112532485103, array([0, 1, 2]))
|
||||
"""
|
||||
ncc = ncc_c(x, y)
|
||||
idx = ncc.argmax()
|
||||
dist = 1 - ncc[idx]
|
||||
return dist, shift(y, idx - len(x))
|
||||
yshift = shift(y, (idx + 1) - max(len(x), len(y)))
|
||||
return dist, yshift
|
||||
|
||||
def extract_shape(idx, x, j, cur_center):
|
||||
"""
|
||||
>>> extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
|
||||
array([ -1.00000000e+00, -3.06658683e-19, 1.00000000e+00])
|
||||
>>> extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
|
||||
array([-0.96836405, 1.02888681, -0.06052275])
|
||||
"""
|
||||
_a = []
|
||||
for i in range(len(idx)):
|
||||
if idx[i] == j:
|
||||
if cur_center.sum() == 0:
|
||||
opt_x = x[i]
|
||||
else:
|
||||
_, opt_x = sbd(cur_center, x[i])
|
||||
_a.append(opt_x)
|
||||
a = np.array(_a)
|
||||
|
||||
if len(a) == 0:
|
||||
return np.zeros((1, x.shape[1]))
|
||||
columns = a.shape[1]
|
||||
y = zscore(a,axis=1,ddof=1)
|
||||
s = np.dot(y.transpose(), y)
|
||||
|
||||
p = np.empty((columns, columns))
|
||||
p.fill(1.0/columns)
|
||||
p = np.eye(columns) - p
|
||||
|
||||
m = np.dot(np.dot(p, s), p)
|
||||
_, vec = eigs(m, 1)
|
||||
centroid = np.real(vec[:,0])
|
||||
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
|
||||
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
|
||||
|
||||
if finddistance1 >= finddistance2:
|
||||
centroid *= -1
|
||||
return zscore(centroid, ddof=1)
|
||||
|
||||
|
||||
def extract_shape(x, c):
|
||||
n = len(x)
|
||||
m = len(x[0])
|
||||
new_x = np.zeros((n, m))
|
||||
for i, row in enumerate(x):
|
||||
_, x_i = sbd(c, row)
|
||||
new_x[i] = x_i
|
||||
s = np.dot(new_x.transpose(), new_x)
|
||||
q = np.identiy(len(s)) - np.ones(len(s)) * 1 / m
|
||||
M = np.dot(np.dot(q.transpose(), s), q)
|
||||
_, vec = eigs(M, 1)
|
||||
return vec[0]
|
||||
def kshape(x, k):
|
||||
"""
|
||||
>>> kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
|
||||
(array([0, 0, 1, 0]), array([[-1.19623139, -0.26273649, 0.26273649, 1.19623139],
|
||||
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
|
||||
"""
|
||||
m = x.shape[0]
|
||||
idx = randint(0, k, size=m)
|
||||
centroids = np.zeros((k,x.shape[1]))
|
||||
|
||||
|
||||
def k_shape(x, k):
|
||||
iter_ = 0
|
||||
idx = np.zeros(len(x)) # TODO dimension, random init
|
||||
old_idx = np.zeros(len(x))
|
||||
c = np.zeros((k,)) # TODO dimension
|
||||
while idx != old_idx and iter_ < 100:
|
||||
old_idx = idx.copy()
|
||||
distances = np.empty((m, k))
|
||||
for _ in range(100):
|
||||
old_idx = idx
|
||||
for j in range(k):
|
||||
x_ = []
|
||||
for i, x_i in enumerate(x):
|
||||
if idx(i) == j:
|
||||
x_.append(x_i)
|
||||
c[j] = extract_shape(x_, c[j])
|
||||
for i, x_i in enumerate(x):
|
||||
min_dist = np.inf
|
||||
for j, c_j in enumerate(c):
|
||||
dist, _ = sbd(c_j, x_i)
|
||||
if dist < min_dist:
|
||||
min_dist = dist
|
||||
idx[i] = j
|
||||
res = extract_shape(idx, x, j, centroids[j])
|
||||
centroids[j] = res
|
||||
|
||||
for i in range(m):
|
||||
for j in range(k):
|
||||
distances[i,j] = 1 - max(ncc_c(x[i], centroids[j]))
|
||||
idx = distances.argmin(1)
|
||||
if norm(old_idx - idx) == 0:
|
||||
break
|
||||
return idx, centroids
|
||||
|
||||
def test_extract_shape():
|
||||
a = zscore(np.ones((3, 10)))
|
||||
c = np.arange(10)
|
||||
extract_shape(a, c)
|
||||
|
||||
|
||||
def test_sbd():
|
||||
a = np.arange(100)
|
||||
r1 = sbd(zscore(a), zscore(a))
|
||||
r2 = sbd(zscore(a), zscore(shift(a, 3)))
|
||||
r3 = sbd(zscore(a), zscore(shift(a, -3)))
|
||||
r4 = sbd(zscore(a), zscore(shift(a, 30)))
|
||||
r5 = sbd(zscore(a), zscore(shift(a, -30)))
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_sbd()
|
||||
test_extract_shape()
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
Loading…
Reference in New Issue
Block a user