Compare commits
3 Commits
76b5228ec9
...
326ff3f667
Author | SHA1 | Date | |
---|---|---|---|
326ff3f667 | |||
e0cebc8c4d | |||
6a2b060d12 |
12
README.md
12
README.md
@ -1,3 +1,15 @@
|
||||
## k-Shape
|
||||
|
||||
Python implementation of k-Shape
|
||||
|
||||
### Usage
|
||||
|
||||
```
|
||||
from kshape import kshape
|
||||
import numpy as np
|
||||
from scipy.stats import zscore
|
||||
|
||||
time_series = [[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]
|
||||
cluster_num = 2
|
||||
clusters = kshape(zscore(time_series), cluster_num)
|
||||
```
|
||||
|
8
example.py
Normal file
8
example.py
Normal file
@ -0,0 +1,8 @@
|
||||
from kshape import kshape
|
||||
import numpy as np
|
||||
from scipy.stats import zscore
|
||||
|
||||
time_series = [[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]
|
||||
cluster_num = 2
|
||||
clusters = kshape(zscore(time_series), cluster_num)
|
||||
print(clusters)
|
178
kshape.py
Normal file
178
kshape.py
Normal file
@ -0,0 +1,178 @@
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
from numpy.random import randint, seed
|
||||
from numpy.linalg import norm, eigh
|
||||
from numpy.linalg import norm
|
||||
from numpy.fft import fft, ifft
|
||||
|
||||
|
||||
#from scipy.linalg import eigh
|
||||
|
||||
def zscore(a, axis=0, ddof=0):
|
||||
a = np.asanyarray(a)
|
||||
mns = a.mean(axis=axis)
|
||||
sstd = a.std(axis=axis, ddof=ddof)
|
||||
if axis and mns.ndim < a.ndim:
|
||||
return ((a - np.expand_dims(mns, axis=axis)) /
|
||||
np.expand_dims(sstd,axis=axis))
|
||||
else:
|
||||
return (a - mns) / sstd
|
||||
|
||||
def roll_zeropad(a, shift, axis=None):
|
||||
a = np.asanyarray(a)
|
||||
if shift == 0: return a
|
||||
if axis is None:
|
||||
n = a.size
|
||||
reshape = True
|
||||
else:
|
||||
n = a.shape[axis]
|
||||
reshape = False
|
||||
if np.abs(shift) > n:
|
||||
res = np.zeros_like(a)
|
||||
elif shift < 0:
|
||||
shift += n
|
||||
zeros = np.zeros_like(a.take(np.arange(n-shift), axis))
|
||||
res = np.concatenate((a.take(np.arange(n-shift,n), axis), zeros), axis)
|
||||
else:
|
||||
zeros = np.zeros_like(a.take(np.arange(n-shift,n), axis))
|
||||
res = np.concatenate((zeros, a.take(np.arange(n-shift), axis)), axis)
|
||||
if reshape:
|
||||
return res.reshape(a.shape)
|
||||
else:
|
||||
return res
|
||||
|
||||
# TODO vectorized version of _ncc_c
|
||||
#def _ncc_c(x,y):
|
||||
# """
|
||||
# >>> _ncc_c(np.array([[1,2,3,4]]), np.array([[1,2,3,4]]))
|
||||
# array([[ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
|
||||
# 0.36666667, 0.13333333]])
|
||||
# >>> _ncc_c(np.array([[1,1,1]]), np.array([[1,1,1]]))
|
||||
# array([[ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333]])
|
||||
# >>> _ncc_c(np.array([[1,2,3]]), np.array([[-1,-1,-1]]))
|
||||
# array([[-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005]])
|
||||
# """
|
||||
# x_len = x.shape[1]
|
||||
# fft_size = 1<<(2*x_len-1).bit_length()
|
||||
# cc = ifftn(fftn(x, (fft_size,)) * np.conj(fftn(y, (fft_size,))))
|
||||
# cc = np.concatenate((cc[:, -(x_len-1):], cc[:, :x_len]), axis=1)
|
||||
# return np.real(cc) / (norm(x) * norm(y))
|
||||
|
||||
def _ncc_c(x,y):
|
||||
"""
|
||||
>>> _ncc_c([1,2,3,4], [1,2,3,4])
|
||||
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
|
||||
0.36666667, 0.13333333])
|
||||
>>> _ncc_c([1,1,1], [1,1,1])
|
||||
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
|
||||
>>> _ncc_c([1,2,3], [-1,-1,-1])
|
||||
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
|
||||
"""
|
||||
x_len = len(x)
|
||||
fft_size = 1<<(2*x_len-1).bit_length()
|
||||
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
|
||||
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
|
||||
return np.real(cc) / (norm(x) * norm(y))
|
||||
|
||||
|
||||
def _sbd(x, y):
|
||||
#"""
|
||||
#>>> _sbd([1,1,1], [1,1,1])
|
||||
#(-2.2204460492503131e-16, array([1, 1, 1]))
|
||||
#>>> _sbd([0,1,2], [1,2,3])
|
||||
#(0.043817112532485103, array([1, 2, 3]))
|
||||
#>>> _sbd([1,2,3], [0,1,2])
|
||||
#(0.043817112532485103, array([0, 1, 2]))
|
||||
#"""
|
||||
ncc = _ncc_c(x, y)
|
||||
idx = ncc.argmax()
|
||||
dist = 1 - ncc[idx]
|
||||
yshift = roll_zeropad(y, (idx + 1) - max(len(x), len(y)))
|
||||
|
||||
return dist, yshift
|
||||
|
||||
|
||||
#@profile
|
||||
def _extract_shape(idx, x, j, cur_center):
|
||||
"""
|
||||
>>> _extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
|
||||
array([-1., 0., 1.])
|
||||
>>> _extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
|
||||
array([-0.96836405, 1.02888681, -0.06052275])
|
||||
>>> _extract_shape(np.array([1,0,1,0]), np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 0, np.array([0,0,0,0]))
|
||||
array([-1.2089303 , -0.19618238, 0.19618238, 1.2089303 ])
|
||||
>>> _extract_shape(np.array([0,0,1,0]), np.array([[1,2,3,4],[0,1,2,3],[-1,1,-1,1],[1,2,2,3]]), 0, np.array([-1.2089303,-0.19618238,0.19618238,1.2089303]))
|
||||
array([-1.19623139, -0.26273649, 0.26273649, 1.19623139])
|
||||
"""
|
||||
_a = []
|
||||
for i in range(len(idx)):
|
||||
if idx[i] == j:
|
||||
if cur_center.sum() == 0:
|
||||
opt_x = x[i]
|
||||
else:
|
||||
_, opt_x = _sbd(cur_center, x[i])
|
||||
_a.append(opt_x)
|
||||
a = np.array(_a)
|
||||
|
||||
if len(a) == 0:
|
||||
return np.zeros((1, x.shape[1]))
|
||||
columns = a.shape[1]
|
||||
y = zscore(a,axis=1,ddof=1)
|
||||
s = np.dot(y.transpose(), y)
|
||||
|
||||
p = np.empty((columns, columns))
|
||||
p.fill(1.0/columns)
|
||||
p = np.eye(columns) - p
|
||||
|
||||
m = np.dot(np.dot(p, s), p)
|
||||
_, vec = eigh(m)
|
||||
centroid = vec[:,-1]
|
||||
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
|
||||
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
|
||||
|
||||
if finddistance1 >= finddistance2:
|
||||
centroid *= -1
|
||||
|
||||
return zscore(centroid, ddof=1)
|
||||
|
||||
def _kshape(x, k):
|
||||
"""
|
||||
>>> from numpy.random import seed; seed(0)
|
||||
>>> _kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
|
||||
(array([0, 0, 1, 0]), array([[-1.2244258 , -0.35015476, 0.52411628, 1.05046429],
|
||||
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
|
||||
"""
|
||||
m = x.shape[0]
|
||||
idx = randint(0, k, size=m)
|
||||
centroids = np.zeros((k,x.shape[1]))
|
||||
distances = np.empty((m, k))
|
||||
|
||||
for _ in range(100):
|
||||
old_idx = idx
|
||||
for j in range(k):
|
||||
centroids[j] = _extract_shape(idx, x, j, centroids[j])
|
||||
|
||||
for i in range(m):
|
||||
for j in range(k):
|
||||
distances[i,j] = 1 - max(_ncc_c(x[i], centroids[j]))
|
||||
idx = distances.argmin(1)
|
||||
if np.array_equal(old_idx, idx):
|
||||
break
|
||||
|
||||
return idx, centroids
|
||||
|
||||
def kshape(x, k):
|
||||
idx, centroids = _kshape(np.array(x), k)
|
||||
clusters = []
|
||||
for i, centroid in enumerate(centroids):
|
||||
series = []
|
||||
for j, val in enumerate(idx):
|
||||
if i == val:
|
||||
series.append(j)
|
||||
clusters.append((centroid, series))
|
||||
return clusters
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
110
test.py
110
test.py
@ -1,110 +0,0 @@
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
from numpy.random import randint
|
||||
from numpy.linalg import norm
|
||||
from numpy.fft import fft, ifft
|
||||
|
||||
from scipy.sparse.linalg import eigs
|
||||
from scipy.stats import zscore
|
||||
from scipy.ndimage.interpolation import shift
|
||||
|
||||
def ncc_c(x,y):
|
||||
"""
|
||||
>>> ncc_c([1,2,3,4], [1,2,3,4])
|
||||
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
|
||||
0.36666667, 0.13333333])
|
||||
>>> ncc_c([1,1,1], [1,1,1])
|
||||
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
|
||||
>>> ncc_c([1,2,3], [-1,-1,-1])
|
||||
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
|
||||
"""
|
||||
x_len = len(x)
|
||||
fft_size = 1<<(2*x_len-1).bit_length()
|
||||
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
|
||||
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
|
||||
return np.real(cc) / (norm(x) * norm(y))
|
||||
|
||||
|
||||
def sbd(x, y):
|
||||
"""
|
||||
>>> sbd([1,1,1], [1,1,1])
|
||||
(-2.2204460492503131e-16, array([1, 1, 1]))
|
||||
>>> sbd([0,1,2], [1,2,3])
|
||||
(0.043817112532485103, array([1, 2, 3]))
|
||||
>>> sbd([1,2,3], [0,1,2])
|
||||
(0.043817112532485103, array([0, 1, 2]))
|
||||
"""
|
||||
ncc = ncc_c(x, y)
|
||||
idx = ncc.argmax()
|
||||
dist = 1 - ncc[idx]
|
||||
yshift = shift(y, (idx + 1) - max(len(x), len(y)))
|
||||
return dist, yshift
|
||||
|
||||
def extract_shape(idx, x, j, cur_center):
|
||||
"""
|
||||
>>> extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
|
||||
array([ -1.00000000e+00, -3.06658683e-19, 1.00000000e+00])
|
||||
>>> extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
|
||||
array([-0.96836405, 1.02888681, -0.06052275])
|
||||
"""
|
||||
_a = []
|
||||
for i in range(len(idx)):
|
||||
if idx[i] == j:
|
||||
if cur_center.sum() == 0:
|
||||
opt_x = x[i]
|
||||
else:
|
||||
_, opt_x = sbd(cur_center, x[i])
|
||||
_a.append(opt_x)
|
||||
a = np.array(_a)
|
||||
|
||||
if len(a) == 0:
|
||||
return np.zeros((1, x.shape[1]))
|
||||
columns = a.shape[1]
|
||||
y = zscore(a,axis=1,ddof=1)
|
||||
s = np.dot(y.transpose(), y)
|
||||
|
||||
p = np.empty((columns, columns))
|
||||
p.fill(1.0/columns)
|
||||
p = np.eye(columns) - p
|
||||
|
||||
m = np.dot(np.dot(p, s), p)
|
||||
_, vec = eigs(m, 1)
|
||||
centroid = np.real(vec[:,0])
|
||||
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
|
||||
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
|
||||
|
||||
if finddistance1 >= finddistance2:
|
||||
centroid *= -1
|
||||
return zscore(centroid, ddof=1)
|
||||
|
||||
|
||||
def kshape(x, k):
|
||||
"""
|
||||
>>> kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
|
||||
(array([0, 0, 1, 0]), array([[-1.19623139, -0.26273649, 0.26273649, 1.19623139],
|
||||
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
|
||||
"""
|
||||
m = x.shape[0]
|
||||
idx = randint(0, k, size=m)
|
||||
centroids = np.zeros((k,x.shape[1]))
|
||||
|
||||
distances = np.empty((m, k))
|
||||
for _ in range(100):
|
||||
old_idx = idx
|
||||
for j in range(k):
|
||||
res = extract_shape(idx, x, j, centroids[j])
|
||||
centroids[j] = res
|
||||
|
||||
for i in range(m):
|
||||
for j in range(k):
|
||||
distances[i,j] = 1 - max(ncc_c(x[i], centroids[j]))
|
||||
idx = distances.argmin(1)
|
||||
if norm(old_idx - idx) == 0:
|
||||
break
|
||||
return idx, centroids
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user