k-shape/kshape.py

177 lines
5.6 KiB
Python
Raw Normal View History

2016-05-12 13:16:30 +00:00
import math
2016-05-11 09:53:14 +00:00
import numpy as np
2016-05-12 13:16:30 +00:00
2016-05-17 12:23:16 +00:00
from numpy.random import randint, seed
from numpy.linalg import norm, eigh
2016-05-12 13:16:30 +00:00
from numpy.linalg import norm
2016-05-11 09:53:14 +00:00
from numpy.fft import fft, ifft
2016-05-12 13:16:30 +00:00
2016-05-17 12:23:16 +00:00
def zscore(a, axis=0, ddof=0):
a = np.asanyarray(a)
mns = a.mean(axis=axis)
sstd = a.std(axis=axis, ddof=ddof)
if axis and mns.ndim < a.ndim:
return ((a - np.expand_dims(mns, axis=axis)) /
np.expand_dims(sstd,axis=axis))
else:
return (a - mns) / sstd
def roll_zeropad(a, shift, axis=None):
a = np.asanyarray(a)
if shift == 0: return a
if axis is None:
n = a.size
reshape = True
else:
n = a.shape[axis]
reshape = False
if np.abs(shift) > n:
res = np.zeros_like(a)
elif shift < 0:
shift += n
zeros = np.zeros_like(a.take(np.arange(n-shift), axis))
res = np.concatenate((a.take(np.arange(n-shift,n), axis), zeros), axis)
else:
zeros = np.zeros_like(a.take(np.arange(n-shift,n), axis))
res = np.concatenate((zeros, a.take(np.arange(n-shift), axis)), axis)
if reshape:
return res.reshape(a.shape)
else:
return res
# TODO vectorized version of _ncc_c
#def _ncc_c(x,y):
# """
# >>> _ncc_c(np.array([[1,2,3,4]]), np.array([[1,2,3,4]]))
# array([[ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
# 0.36666667, 0.13333333]])
# >>> _ncc_c(np.array([[1,1,1]]), np.array([[1,1,1]]))
# array([[ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333]])
# >>> _ncc_c(np.array([[1,2,3]]), np.array([[-1,-1,-1]]))
# array([[-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005]])
# """
# x_len = x.shape[1]
# fft_size = 1<<(2*x_len-1).bit_length()
# cc = ifftn(fftn(x, (fft_size,)) * np.conj(fftn(y, (fft_size,))))
# cc = np.concatenate((cc[:, -(x_len-1):], cc[:, :x_len]), axis=1)
# return np.real(cc) / (norm(x) * norm(y))
2016-05-11 09:53:14 +00:00
2016-05-12 13:46:32 +00:00
def _ncc_c(x,y):
2016-05-12 13:16:30 +00:00
"""
2016-05-17 12:23:16 +00:00
>>> _ncc_c([1,2,3,4], [1,2,3,4])
2016-05-12 13:16:30 +00:00
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
0.36666667, 0.13333333])
2016-05-17 12:23:16 +00:00
>>> _ncc_c([1,1,1], [1,1,1])
2016-05-12 13:16:30 +00:00
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
2016-05-17 12:23:16 +00:00
>>> _ncc_c([1,2,3], [-1,-1,-1])
2016-05-12 13:16:30 +00:00
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
"""
x_len = len(x)
fft_size = 1<<(2*x_len-1).bit_length()
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
return np.real(cc) / (norm(x) * norm(y))
2016-05-11 09:53:14 +00:00
2016-05-12 13:46:32 +00:00
def _sbd(x, y):
2016-05-12 13:16:30 +00:00
"""
2016-05-17 12:23:16 +00:00
>>> _sbd([1,1,1], [1,1,1])
2016-05-12 13:16:30 +00:00
(-2.2204460492503131e-16, array([1, 1, 1]))
2016-05-17 12:23:16 +00:00
>>> _sbd([0,1,2], [1,2,3])
2016-05-12 13:16:30 +00:00
(0.043817112532485103, array([1, 2, 3]))
2016-05-17 12:23:16 +00:00
>>> _sbd([1,2,3], [0,1,2])
2016-05-12 13:16:30 +00:00
(0.043817112532485103, array([0, 1, 2]))
"""
2016-05-12 13:46:32 +00:00
ncc = _ncc_c(x, y)
2016-05-11 09:53:14 +00:00
idx = ncc.argmax()
dist = 1 - ncc[idx]
2016-05-17 12:23:16 +00:00
yshift = roll_zeropad(y, (idx + 1) - max(len(x), len(y)))
2016-05-12 13:16:30 +00:00
return dist, yshift
2016-05-17 12:23:16 +00:00
#@profile
2016-05-12 13:46:32 +00:00
def _extract_shape(idx, x, j, cur_center):
2016-05-12 13:16:30 +00:00
"""
2016-05-17 12:23:16 +00:00
>>> _extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
array([-1., 0., 1.])
>>> _extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
2016-05-12 13:16:30 +00:00
array([-0.96836405, 1.02888681, -0.06052275])
2016-05-17 12:23:16 +00:00
>>> _extract_shape(np.array([1,0,1,0]), np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 0, np.array([0,0,0,0]))
array([-1.2089303 , -0.19618238, 0.19618238, 1.2089303 ])
>>> _extract_shape(np.array([0,0,1,0]), np.array([[1,2,3,4],[0,1,2,3],[-1,1,-1,1],[1,2,2,3]]), 0, np.array([-1.2089303,-0.19618238,0.19618238,1.2089303]))
array([-1.19623139, -0.26273649, 0.26273649, 1.19623139])
2016-05-12 13:16:30 +00:00
"""
_a = []
for i in range(len(idx)):
if idx[i] == j:
if cur_center.sum() == 0:
opt_x = x[i]
else:
2016-05-12 13:46:32 +00:00
_, opt_x = _sbd(cur_center, x[i])
2016-05-12 13:16:30 +00:00
_a.append(opt_x)
a = np.array(_a)
if len(a) == 0:
return np.zeros((1, x.shape[1]))
columns = a.shape[1]
y = zscore(a,axis=1,ddof=1)
s = np.dot(y.transpose(), y)
p = np.empty((columns, columns))
p.fill(1.0/columns)
p = np.eye(columns) - p
m = np.dot(np.dot(p, s), p)
2016-05-17 12:23:16 +00:00
_, vec = eigh(m)
centroid = vec[:,-1]
2016-05-12 13:16:30 +00:00
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
if finddistance1 >= finddistance2:
centroid *= -1
2016-05-17 12:23:16 +00:00
return zscore(centroid, ddof=1)
2016-05-12 13:16:30 +00:00
2016-05-12 13:46:32 +00:00
def _kshape(x, k):
2016-05-12 13:16:30 +00:00
"""
2016-05-17 12:23:16 +00:00
>>> from numpy.random import seed; seed(0)
>>> _kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
(array([0, 0, 1, 0]), array([[-1.2244258 , -0.35015476, 0.52411628, 1.05046429],
2016-05-12 13:16:30 +00:00
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
"""
m = x.shape[0]
idx = randint(0, k, size=m)
centroids = np.zeros((k,x.shape[1]))
distances = np.empty((m, k))
2016-05-17 12:23:16 +00:00
2016-05-12 13:16:30 +00:00
for _ in range(100):
old_idx = idx
2016-05-11 09:53:14 +00:00
for j in range(k):
2016-05-17 12:23:16 +00:00
centroids[j] = _extract_shape(idx, x, j, centroids[j])
2016-05-12 13:16:30 +00:00
for i in range(m):
2016-05-17 12:23:16 +00:00
for j in range(k):
distances[i,j] = 1 - max(_ncc_c(x[i], centroids[j]))
2016-05-12 13:16:30 +00:00
idx = distances.argmin(1)
2016-05-17 12:23:16 +00:00
if np.array_equal(old_idx, idx):
2016-05-12 13:16:30 +00:00
break
2016-05-17 12:23:16 +00:00
2016-05-12 13:16:30 +00:00
return idx, centroids
2016-05-12 13:46:32 +00:00
def kshape(x, k):
idx, centroids = _kshape(np.array(x), k)
clusters = []
for i, centroid in enumerate(centroids):
series = []
for j, val in enumerate(idx):
if i == val:
series.append(j)
clusters.append((centroid, series))
return clusters
2016-05-11 09:53:14 +00:00
if __name__ == "__main__":
2016-05-12 13:16:30 +00:00
import doctest
doctest.testmod()