2016-05-12 13:16:30 +00:00
|
|
|
import math
|
2016-05-11 09:53:14 +00:00
|
|
|
import numpy as np
|
2016-05-12 13:16:30 +00:00
|
|
|
|
|
|
|
from numpy.random import randint
|
|
|
|
from numpy.linalg import norm
|
2016-05-11 09:53:14 +00:00
|
|
|
from numpy.fft import fft, ifft
|
2016-05-12 13:16:30 +00:00
|
|
|
|
2016-05-11 09:53:14 +00:00
|
|
|
from scipy.sparse.linalg import eigs
|
|
|
|
from scipy.stats import zscore
|
|
|
|
from scipy.ndimage.interpolation import shift
|
|
|
|
|
2016-05-12 13:16:30 +00:00
|
|
|
def ncc_c(x,y):
|
|
|
|
"""
|
|
|
|
>>> ncc_c([1,2,3,4], [1,2,3,4])
|
|
|
|
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
|
|
|
|
0.36666667, 0.13333333])
|
|
|
|
>>> ncc_c([1,1,1], [1,1,1])
|
|
|
|
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
|
|
|
|
>>> ncc_c([1,2,3], [-1,-1,-1])
|
|
|
|
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
|
|
|
|
"""
|
|
|
|
x_len = len(x)
|
|
|
|
fft_size = 1<<(2*x_len-1).bit_length()
|
|
|
|
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
|
|
|
|
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
|
|
|
|
return np.real(cc) / (norm(x) * norm(y))
|
2016-05-11 09:53:14 +00:00
|
|
|
|
|
|
|
|
|
|
|
def sbd(x, y):
|
2016-05-12 13:16:30 +00:00
|
|
|
"""
|
|
|
|
>>> sbd([1,1,1], [1,1,1])
|
|
|
|
(-2.2204460492503131e-16, array([1, 1, 1]))
|
|
|
|
>>> sbd([0,1,2], [1,2,3])
|
|
|
|
(0.043817112532485103, array([1, 2, 3]))
|
|
|
|
>>> sbd([1,2,3], [0,1,2])
|
|
|
|
(0.043817112532485103, array([0, 1, 2]))
|
|
|
|
"""
|
|
|
|
ncc = ncc_c(x, y)
|
2016-05-11 09:53:14 +00:00
|
|
|
idx = ncc.argmax()
|
|
|
|
dist = 1 - ncc[idx]
|
2016-05-12 13:16:30 +00:00
|
|
|
yshift = shift(y, (idx + 1) - max(len(x), len(y)))
|
|
|
|
return dist, yshift
|
|
|
|
|
|
|
|
def extract_shape(idx, x, j, cur_center):
|
|
|
|
"""
|
|
|
|
>>> extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
|
|
|
|
array([ -1.00000000e+00, -3.06658683e-19, 1.00000000e+00])
|
|
|
|
>>> extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
|
|
|
|
array([-0.96836405, 1.02888681, -0.06052275])
|
|
|
|
"""
|
|
|
|
_a = []
|
|
|
|
for i in range(len(idx)):
|
|
|
|
if idx[i] == j:
|
|
|
|
if cur_center.sum() == 0:
|
|
|
|
opt_x = x[i]
|
|
|
|
else:
|
|
|
|
_, opt_x = sbd(cur_center, x[i])
|
|
|
|
_a.append(opt_x)
|
|
|
|
a = np.array(_a)
|
|
|
|
|
|
|
|
if len(a) == 0:
|
|
|
|
return np.zeros((1, x.shape[1]))
|
|
|
|
columns = a.shape[1]
|
|
|
|
y = zscore(a,axis=1,ddof=1)
|
|
|
|
s = np.dot(y.transpose(), y)
|
|
|
|
|
|
|
|
p = np.empty((columns, columns))
|
|
|
|
p.fill(1.0/columns)
|
|
|
|
p = np.eye(columns) - p
|
|
|
|
|
|
|
|
m = np.dot(np.dot(p, s), p)
|
|
|
|
_, vec = eigs(m, 1)
|
|
|
|
centroid = np.real(vec[:,0])
|
|
|
|
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
|
|
|
|
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
|
|
|
|
|
|
|
|
if finddistance1 >= finddistance2:
|
|
|
|
centroid *= -1
|
|
|
|
return zscore(centroid, ddof=1)
|
|
|
|
|
|
|
|
|
|
|
|
def kshape(x, k):
|
|
|
|
"""
|
|
|
|
>>> kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
|
|
|
|
(array([0, 0, 1, 0]), array([[-1.19623139, -0.26273649, 0.26273649, 1.19623139],
|
|
|
|
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
|
|
|
|
"""
|
|
|
|
m = x.shape[0]
|
|
|
|
idx = randint(0, k, size=m)
|
|
|
|
centroids = np.zeros((k,x.shape[1]))
|
|
|
|
|
|
|
|
distances = np.empty((m, k))
|
|
|
|
for _ in range(100):
|
|
|
|
old_idx = idx
|
2016-05-11 09:53:14 +00:00
|
|
|
for j in range(k):
|
2016-05-12 13:16:30 +00:00
|
|
|
res = extract_shape(idx, x, j, centroids[j])
|
|
|
|
centroids[j] = res
|
|
|
|
|
|
|
|
for i in range(m):
|
|
|
|
for j in range(k):
|
|
|
|
distances[i,j] = 1 - max(ncc_c(x[i], centroids[j]))
|
|
|
|
idx = distances.argmin(1)
|
|
|
|
if norm(old_idx - idx) == 0:
|
|
|
|
break
|
|
|
|
return idx, centroids
|
|
|
|
|
2016-05-11 09:53:14 +00:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2016-05-12 13:16:30 +00:00
|
|
|
import doctest
|
|
|
|
doctest.testmod()
|