Compare commits

..

3 Commits

Author SHA1 Message Date
326ff3f667 remove dependency on scipy 2016-05-17 12:23:16 +00:00
e0cebc8c4d add example 2016-05-12 13:46:32 +00:00
6a2b060d12 s/test.py/kshape.py/ 2016-05-12 13:22:40 +00:00
4 changed files with 198 additions and 110 deletions

View File

@ -1,3 +1,15 @@
## k-Shape ## k-Shape
Python implementation of k-Shape Python implementation of k-Shape
### Usage
```
from kshape import kshape
import numpy as np
from scipy.stats import zscore
time_series = [[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]
cluster_num = 2
clusters = kshape(zscore(time_series), cluster_num)
```

8
example.py Normal file
View File

@ -0,0 +1,8 @@
from kshape import kshape
import numpy as np
from scipy.stats import zscore
time_series = [[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]
cluster_num = 2
clusters = kshape(zscore(time_series), cluster_num)
print(clusters)

178
kshape.py Normal file
View File

@ -0,0 +1,178 @@
import math
import numpy as np
from numpy.random import randint, seed
from numpy.linalg import norm, eigh
from numpy.linalg import norm
from numpy.fft import fft, ifft
#from scipy.linalg import eigh
def zscore(a, axis=0, ddof=0):
a = np.asanyarray(a)
mns = a.mean(axis=axis)
sstd = a.std(axis=axis, ddof=ddof)
if axis and mns.ndim < a.ndim:
return ((a - np.expand_dims(mns, axis=axis)) /
np.expand_dims(sstd,axis=axis))
else:
return (a - mns) / sstd
def roll_zeropad(a, shift, axis=None):
a = np.asanyarray(a)
if shift == 0: return a
if axis is None:
n = a.size
reshape = True
else:
n = a.shape[axis]
reshape = False
if np.abs(shift) > n:
res = np.zeros_like(a)
elif shift < 0:
shift += n
zeros = np.zeros_like(a.take(np.arange(n-shift), axis))
res = np.concatenate((a.take(np.arange(n-shift,n), axis), zeros), axis)
else:
zeros = np.zeros_like(a.take(np.arange(n-shift,n), axis))
res = np.concatenate((zeros, a.take(np.arange(n-shift), axis)), axis)
if reshape:
return res.reshape(a.shape)
else:
return res
# TODO vectorized version of _ncc_c
#def _ncc_c(x,y):
# """
# >>> _ncc_c(np.array([[1,2,3,4]]), np.array([[1,2,3,4]]))
# array([[ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
# 0.36666667, 0.13333333]])
# >>> _ncc_c(np.array([[1,1,1]]), np.array([[1,1,1]]))
# array([[ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333]])
# >>> _ncc_c(np.array([[1,2,3]]), np.array([[-1,-1,-1]]))
# array([[-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005]])
# """
# x_len = x.shape[1]
# fft_size = 1<<(2*x_len-1).bit_length()
# cc = ifftn(fftn(x, (fft_size,)) * np.conj(fftn(y, (fft_size,))))
# cc = np.concatenate((cc[:, -(x_len-1):], cc[:, :x_len]), axis=1)
# return np.real(cc) / (norm(x) * norm(y))
def _ncc_c(x,y):
"""
>>> _ncc_c([1,2,3,4], [1,2,3,4])
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
0.36666667, 0.13333333])
>>> _ncc_c([1,1,1], [1,1,1])
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
>>> _ncc_c([1,2,3], [-1,-1,-1])
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
"""
x_len = len(x)
fft_size = 1<<(2*x_len-1).bit_length()
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
return np.real(cc) / (norm(x) * norm(y))
def _sbd(x, y):
#"""
#>>> _sbd([1,1,1], [1,1,1])
#(-2.2204460492503131e-16, array([1, 1, 1]))
#>>> _sbd([0,1,2], [1,2,3])
#(0.043817112532485103, array([1, 2, 3]))
#>>> _sbd([1,2,3], [0,1,2])
#(0.043817112532485103, array([0, 1, 2]))
#"""
ncc = _ncc_c(x, y)
idx = ncc.argmax()
dist = 1 - ncc[idx]
yshift = roll_zeropad(y, (idx + 1) - max(len(x), len(y)))
return dist, yshift
#@profile
def _extract_shape(idx, x, j, cur_center):
"""
>>> _extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
array([-1., 0., 1.])
>>> _extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
array([-0.96836405, 1.02888681, -0.06052275])
>>> _extract_shape(np.array([1,0,1,0]), np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 0, np.array([0,0,0,0]))
array([-1.2089303 , -0.19618238, 0.19618238, 1.2089303 ])
>>> _extract_shape(np.array([0,0,1,0]), np.array([[1,2,3,4],[0,1,2,3],[-1,1,-1,1],[1,2,2,3]]), 0, np.array([-1.2089303,-0.19618238,0.19618238,1.2089303]))
array([-1.19623139, -0.26273649, 0.26273649, 1.19623139])
"""
_a = []
for i in range(len(idx)):
if idx[i] == j:
if cur_center.sum() == 0:
opt_x = x[i]
else:
_, opt_x = _sbd(cur_center, x[i])
_a.append(opt_x)
a = np.array(_a)
if len(a) == 0:
return np.zeros((1, x.shape[1]))
columns = a.shape[1]
y = zscore(a,axis=1,ddof=1)
s = np.dot(y.transpose(), y)
p = np.empty((columns, columns))
p.fill(1.0/columns)
p = np.eye(columns) - p
m = np.dot(np.dot(p, s), p)
_, vec = eigh(m)
centroid = vec[:,-1]
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
if finddistance1 >= finddistance2:
centroid *= -1
return zscore(centroid, ddof=1)
def _kshape(x, k):
"""
>>> from numpy.random import seed; seed(0)
>>> _kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
(array([0, 0, 1, 0]), array([[-1.2244258 , -0.35015476, 0.52411628, 1.05046429],
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
"""
m = x.shape[0]
idx = randint(0, k, size=m)
centroids = np.zeros((k,x.shape[1]))
distances = np.empty((m, k))
for _ in range(100):
old_idx = idx
for j in range(k):
centroids[j] = _extract_shape(idx, x, j, centroids[j])
for i in range(m):
for j in range(k):
distances[i,j] = 1 - max(_ncc_c(x[i], centroids[j]))
idx = distances.argmin(1)
if np.array_equal(old_idx, idx):
break
return idx, centroids
def kshape(x, k):
idx, centroids = _kshape(np.array(x), k)
clusters = []
for i, centroid in enumerate(centroids):
series = []
for j, val in enumerate(idx):
if i == val:
series.append(j)
clusters.append((centroid, series))
return clusters
if __name__ == "__main__":
import doctest
doctest.testmod()

110
test.py
View File

@ -1,110 +0,0 @@
import math
import numpy as np
from numpy.random import randint
from numpy.linalg import norm
from numpy.fft import fft, ifft
from scipy.sparse.linalg import eigs
from scipy.stats import zscore
from scipy.ndimage.interpolation import shift
def ncc_c(x,y):
"""
>>> ncc_c([1,2,3,4], [1,2,3,4])
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
0.36666667, 0.13333333])
>>> ncc_c([1,1,1], [1,1,1])
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
>>> ncc_c([1,2,3], [-1,-1,-1])
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
"""
x_len = len(x)
fft_size = 1<<(2*x_len-1).bit_length()
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
return np.real(cc) / (norm(x) * norm(y))
def sbd(x, y):
"""
>>> sbd([1,1,1], [1,1,1])
(-2.2204460492503131e-16, array([1, 1, 1]))
>>> sbd([0,1,2], [1,2,3])
(0.043817112532485103, array([1, 2, 3]))
>>> sbd([1,2,3], [0,1,2])
(0.043817112532485103, array([0, 1, 2]))
"""
ncc = ncc_c(x, y)
idx = ncc.argmax()
dist = 1 - ncc[idx]
yshift = shift(y, (idx + 1) - max(len(x), len(y)))
return dist, yshift
def extract_shape(idx, x, j, cur_center):
"""
>>> extract_shape(np.array([0,1,2]), np.array([[1,2,3], [4,5,6]]), 1, np.array([0,3,4]))
array([ -1.00000000e+00, -3.06658683e-19, 1.00000000e+00])
>>> extract_shape(np.array([0,1,2]), np.array([[-1,2,3], [4,-5,6]]), 1, np.array([0,3,4]))
array([-0.96836405, 1.02888681, -0.06052275])
"""
_a = []
for i in range(len(idx)):
if idx[i] == j:
if cur_center.sum() == 0:
opt_x = x[i]
else:
_, opt_x = sbd(cur_center, x[i])
_a.append(opt_x)
a = np.array(_a)
if len(a) == 0:
return np.zeros((1, x.shape[1]))
columns = a.shape[1]
y = zscore(a,axis=1,ddof=1)
s = np.dot(y.transpose(), y)
p = np.empty((columns, columns))
p.fill(1.0/columns)
p = np.eye(columns) - p
m = np.dot(np.dot(p, s), p)
_, vec = eigs(m, 1)
centroid = np.real(vec[:,0])
finddistance1 = math.sqrt(((a[0] - centroid) ** 2).sum())
finddistance2 = math.sqrt(((a[0] + centroid) ** 2).sum())
if finddistance1 >= finddistance2:
centroid *= -1
return zscore(centroid, ddof=1)
def kshape(x, k):
"""
>>> kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2)
(array([0, 0, 1, 0]), array([[-1.19623139, -0.26273649, 0.26273649, 1.19623139],
[-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]]))
"""
m = x.shape[0]
idx = randint(0, k, size=m)
centroids = np.zeros((k,x.shape[1]))
distances = np.empty((m, k))
for _ in range(100):
old_idx = idx
for j in range(k):
res = extract_shape(idx, x, j, centroids[j])
centroids[j] = res
for i in range(m):
for j in range(k):
distances[i,j] = 1 - max(ncc_c(x[i], centroids[j]))
idx = distances.argmin(1)
if norm(old_idx - idx) == 0:
break
return idx, centroids
if __name__ == "__main__":
import doctest
doctest.testmod()